Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Ultrasound J ; 14(1): 21, 2022 Jun 01.
Article in English | MEDLINE | ID: covidwho-1875024

ABSTRACT

BACKGROUND AND OBJECTIVES: Lung Ultrasound Score (LUS) identifies and monitors pneumonia by assigning increasing scores. However, it does not include parameters, such as inferior vena cava (IVC) diameter and index of collapse, diaphragmatic excursions and search for pleural and pericardial effusions. Therefore, we propose a new improved scoring system, termed "integrated" lung ultrasound score (i-LUS) which incorporates previously mentioned parameters that can help in prediction of disease severity and survival, choice of oxygenation mode/ventilation and assignment to subsequent areas of care in patients with COVID-19 pneumonia. METHODS: Upon admission at the sub-intensive section of the emergency medical department (SEMD), 143 consecutively examined COVID-19 patients underwent i-LUS together with all other routine analysis. A database for anamnestic information, laboratory data, gas analysis and i-LUS parameters was created and analyzed. RESULTS: Of 143 enrolled patients, 59.4% were male (mean age 71 years) and 40.6% female. (mean age 79 years: p = 0.005). Patients that survived at 1 month had i-LUS score of 16, which was lower than that of non-survivors (median 20; p = 0.005). Survivors had a higher PaO2/FiO2 (median 321.5) compared to non-survivors (median 229, p < 0.001). There was a correlation between i-LUS and PaO2/FiO2 ratio (rho:-0.4452; p < 0.001), PaO2/FiO2 and survival status (rho:-0.3452; p < 0.001), as well as i-LUS score and disease outcome (rho:0.24; p = 0.005). In non-survivors, the serum values of different significant COVID indicators were severely expressed. The i-LUS score was higher (median 20) in patients who required non-invasive ventilation (NIV) than in those treated only by oxygen therapy (median 15.42; p = 0.003). The odds ratio for death outcome was 1.08 (confidence interval 1.02-1.15) for each point increased. At 1-month follow-up, 65 patients (45.5%) died and 78 (54.5%) survived. Patients admitted to the high critical ward had higher i-LUS score than those admitted to the low critical one (p < 0.003). CONCLUSIONS: i-LUS could be used as a helpful clinical tool for early decision-making in patients with COVID-19 pneumonia.

2.
Acta Biomed ; 92(4): e2021233, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1395633

ABSTRACT

BACKGROUND: The need to determine prognostic factors that can predict a particularly severe or, conversely, the benign course of COVID-19 is particularly perceived in the Emergency Department (ED), considering the scarcity of resources for a conspicuous mass of patients. The aim of our study was to identify some predictors for 30-day mortality among some clinical, laboratory, and ultrasound variables in a COVID-19 patients population. METHODS: Prospective single-center pilot study conducted in an ED of a University Hospital. A consecutive sample of confirmed COVID-19 patients with acute respiratory failure was enrolled from March 8th to April 15th, 2020. RESULTS: 143 patients were enrolled. Deceased patients (n = 65) were older (81 vs. 61 years, p <0.001), and they had more frequently a history of heart disease, neurological disease, or chronic obstructive pulmonary disease (p-values = 0.026, 0.025, and 0.034, respectively) than survived patients. Troponin I and presepsin had a significant correlation with a worse outcome. Troponin achieved a sensitivity of 77% and a specificity of 82% for a cut-off value of 27.6 ng/L. The presepsin achieved a sensitivity of 54% and a specificity of 92% for a cut-off value of 871 pg/mL. CONCLUSION: In a population of COVID-19 patients with acute respiratory failure in an ED, presepsin and troponin I are accurate predictors of 30-day mortality. Presepsin is highly specific and could permit the early identification of patients who could benefit from more intensive care as soon as they enter the ED. Further validation studies are needed to confirm this result.


Subject(s)
COVID-19 , Biomarkers , Emergency Service, Hospital , Humans , Lipopolysaccharide Receptors , Peptide Fragments , Pilot Projects , Prognosis , Prospective Studies , SARS-CoV-2 , Troponin I
SELECTION OF CITATIONS
SEARCH DETAIL